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Abstract 

The concept of systems of linear equations (SLEs) is fundamental and core in linear algebra, a 

subject, which has many applications in a number of disciplines. Gaussian elimination is a versatile 

method, which can be used to solve almost all types of SLEs by using row-reductions. This study 

focused on exploring undergraduate students’ conceptualizations of elementary row operations 

(EROs) as a means to solve SLEs. The purpose of this study was to explore undergraduate students’ 

conceptualizations of row reductions and their applications to the solutions of systems of 

equations. The perspectives of the action-process-object-schema theoretical framework were 

used in analyzing data and discussing the findings. To explore the students’ conceptualization of 

EROs, a descriptive research approach was followed. I considered a case study of 131 students 

registered for a mathematics for educators course, where linear algebra was one of the topics. 

The findings revealed that students attained the action conception of reducing a system with 

unique solutions but had challenges reducing and interpreting solutions to a system with non-

unique solutions. The latter row-reduction implored process and object conceptions especially 

when variable elements in the augmented matrix were involved. As students find the learning of 

linear algebra difficult, this study contributes to the debate in literature on how to improve its 

teaching and make suggestions on the ways make more effective the learning of linear algebra. 

Keywords: Gaussian elimination, elementary row operations, augmented matrices, APOS theory, 

system of linear equations, linear algebra, unique solution, infinitely many solutions 

 

INTRODUCTION 

South African students first encounter linear algebra 
at tertiary level. In secondary school, they are limited to 
basic methods of solving simultaneous equations using 
the elimination, graphical or substitution methods. The 
national curriculum and assessment policy statement 
states that starting in the tenth grade, students should be 
taught to “solve simultaneous linear equations in two 
unknowns” (Department of Education, 2011, p. 22). The 
solving of systems of linear equations (SLEs) in two 
variables forms the foundation for linear algebra, which 
starts in earnest in tertiary education. Linear algebra is 
concerned with manipulating SLEs and their 
representations in the vector spaces using matrices 
(Mutambara & Bansilal, 2018) and one of the integral 
topics in undergraduate and postgraduate mathematics. 
It is the study of planes and straight lines, mappings and 

vector spaces that are required for linear 
transformations. The concept of linear systems is a core 
and fundamental part of linear algebra (Karunakaran & 
Higgins, 2021) and a basis for studying further concepts 
of linear algebra such as linear transformations, 
characteristic values, rank and vectors (Dewi et al., 2021). 

Systems of equations with three or more unknowns 
are the domain for undergraduate education in South 
Africa. In undergraduate mathematics, students study 
linear algebra as a means to solve SLEs using the matrix 
method. This study is confined to this aspect of linear 
algebra. This creates a transition from secondary school 
concepts and the more advanced and abstract concepts 
of linear algebra. The introduction of the matrix method 
commences with students exposed to the meaning and 
operations of matrices. Thereafter, properties of 
determinants, matrix inverses and elementary row 
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operations (EROs) are learnt and all building up to the 
solution of SLEs.  

The term system of equations refers to conditions, 
where two or more unknown variables are related to 
each other through an equal or unequal number of 
equations. Therefore, an SLE is an array of linear 
equations of the same unknowns, that is, a system 
composed of 𝑚 linear equations 𝐿1; 𝐿2; 𝐿3; 𝐿4; … ; 𝐿𝑚 in 𝑛 
unknowns 𝑥1; 𝑥2; 𝑥3; 𝑥4; … ; 𝑥𝑛, which can expressed, as 
follows: 

 

𝑎11𝑥1 + 𝑎12𝑥2 + … + 𝑎1𝑛𝑥𝑛 = 𝑏1 

𝑎21𝑥1 + 𝑎22𝑥2 + … + 𝑎2𝑛𝑥𝑛 = 𝑏2 

… 

𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + … + 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚 

(1) 

The terms 𝑎𝑖𝑗  and 𝑏𝑖 are constants and the 𝑎𝑖𝑗  is the 

coefficient of the unknown 𝑥𝑗 in, the equation 𝐿𝑖. The 

term 𝑏𝑖 is the constant of the equation 𝐿𝑖. A solution of 
the system in Eq. (1) are values for the unknowns, which 
are solutions to each of the equations in the system. The 
secondary school methods of substitution and 
elimination become cumbersome, inefficient, 
unsustainable and unreliable to solve general system in 
Eq. (1). The challenge of solving Eq. (1) is the genesis of 
linear algebra, which provides a systematic way to 
effectively solve general SLEs of any number of 
unknowns. The system in Eq. (1) can be transformed into 
matrices composed of coefficient, variable and constant 
matrices. The system in Eq. (1) with 𝑚 equations in 𝑛 
unknowns is associated with the following matrices: the 

coefficient matrix of the system (

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑛

), the 

variable matrix (

𝑥1

⋮
𝑥𝑛

) and the constant matrix (
𝑏1

⋮
𝑏𝑚

). The 

augmented matrix of the system is given by 

(

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑛

|
𝑏1

⋮
𝑏𝑚

), which is composed of the 

coefficient and the constant matrices separated by a 
vertical line. One of the ways to solve an SLE is by 
working with its augmented matrix rather than the 
equations themselves nor the individual coefficient, 
variable and constant matrices. Any ERO on the 
augmented matrix is equivalent to applying the 
corresponding operation on the original system. 

The common techniques used to solve SLEs using the 
matrix method in an introductory linear algebra course 
are the Cramer’s rule, the inverse method and the 
Gaussian elimination (GE). The first two methods are 
hinged on the concept of determinant and yield a unique 
solution when the determinant is non-zero. If the 
determinant is zero, the two methods are inconclusive. 
Moreover, Cramer and inverse methods cannot be used 
when the solution to SLE is infinitely many or does not 
exist. The inapplicability is based on the limitations of 
evaluating the determinant of a non-square coefficient 
matrix when there are more equations than unknowns, 
giving rise to free variables.  

GE method of solving SLEs is versatile in the sense 
that it can determine the solutions to an SLE whether 
they are unique, are infinitely many or do not exist. GE 
method does not rely on the determinant but by its 
nature seeks to eliminate all known variables except one. 
This is achieved by reducing the coefficient matrix to 
row echelon by executing EROs. In linear algebra there 
are three rules for reducing a matrix to echelon, and 
these are  

(a) swap any two rows,  

(b) divide or multiply a row by a non-zero constant, 
and  

(c) subtract or add a multiple of one row to another 
(Rindu, 2017).  

EROs can also be used as an alternative method to 
evaluate the inverse of square matrices. Thus, EROs are 
taught firstly to reduce matrices to echelon form and 
secondly as an application to the solution of SLEs.  

Statement of Problem 

Linear algebra is one of the first abstract mathematics 
courses that students encounter at university, which has 
many applications in sciences, technology, engineering 
and economics (Harel, 2017; John et al., 2016; Plaxco & 
Wawro, 2015; Tai, 2020). Many problems in fields of 
fields mentioned above can be modelled by linear 
algebra (Arnawa et al., 2019; Liu, 2015). In its basic state, 
linear algebra is used to solve SLEs in systematic way. In 
understanding SLEs, the concepts of EROs, inverse, 
determinant and echelon matrices are essential concepts, 
which need to be emphasized. Thus, lack of adequate 
understanding of the essential concepts in SLEs 
negatively impact students’ achievement (Arnawa et al., 

Contribution to the literature 

• This study revealed a greater need for more problems, which provide students with the opportunities to 
scrutinize SLEs geometrically and algebraically for all types existing of solutions for all orders. 

• The concept of EROs is often reduced to rules without meaning yet it plays a vital role in computing 
inverses and solving SLE using GE.  

• The learning and teaching of SLE by GE should be problem-based as a means to help students develop 
the necessary mental structures of both the concepts of EROs and solving SLE. 
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2019). Hence, literature reports that students grapple to 
come to terms with the key concept of linear algebra 
courses (Harel, 2017; Kazunga & Bansilal, 2017; 
Mutambara & Bansilal, 2018, 2022; Stewart & Thomas, 
2010; Tai, 2020). Tai (2020) posits that part of the 
difficulties may be attributed to the transition from 
elementary to advanced mathematics. This study 
intends to give an insight into the undergraduate 
students’ hierarchical development of knowledge as 
they learn solving SLEs using the matrix method. This 
study focused on exploring undergraduate students’ 
conceptualization of EROs as a means to solve SLEs by 
GE method. Such a study has not been done before and 
literature review in the next section elaborates related 
studies to this. The purpose of this study was to explore 
undergraduate students’ conceptualization of EROs as a 
way to solve SLEs. The research questions for this study 
are, “What are undergraduate students’ 
conceptualization of EROs in solving SLEs?” and “What 
are the undergraduate students’ knowledge levels when 
they learn EROs?” 

LITERATURE AND THEORY 

In mathematics some concepts are learnt not as end 
in themselves but as a means to the end. In this regard, 
Kazunga and Bansilal (2020) looked into in-service 
teachers’ understanding of the pre-requisite concepts of 
determinants and inverses as a means to solve SLEs 
using the Cramer and inverse methods. Their findings 
revealed that students could not solve SLE properly 
because they struggled with the pre-requisite concepts 
of determinants and inverses. Conversely, where 
students have sufficiently mastered the pre-requisite 
concepts, they can use the knowledge in further 
transformations. As a result, Kazunga and Bansilal 
(2020) explored students’ understanding of 
determinants and inverses initially, followed by the 
students’ understanding of the application of these 
concepts in solving SLEs using the obvious inverse 
method. In the same vein, students’ lack of foundational 
knowledge might trifle full understanding of a given 
concept, similar to lack of pre-requisite concepts. On a 
closer inspection of the misconceptions and errors 
committed by 73 in-service teachers registered for 
mathematics teaching degree in the concept of linear 
independence, Mutambara and Bansilal (2022) 
discovered that students’ errors were mostly 
foundational. The students erred in processes of row 
reductions and interpretation of solutions to SLEs. 
Consequently, the foundational errors had the negative 
effect on the conceptual understanding of linear 
independence. The authors suggested granting more 
teaching time to these in-service teachers since they 
operated under constrained time frames during their 
study periods. In another study, Mutambara and 
Bansilal (2018) revealed that in-service teachers 
struggled to understand vector subspaces due to non-

encapsulation of pre-requisite concepts. The students 
missed concepts of sets and binary operations, as well as 
the role of counter-examples in proving that a set is not 
a subspace. Full schema development of a mathematics 
concept depends on the coherent collection of actions, 
processes and objects and other related pre-schemas, 
that is, according to the action-process-object-schema 
(APOS) theory (Arnon et al., 2014). Furthermore, 
Sepideh and Michael (2010) revealed that emphasis on 
the pre-requisite concepts on their own did not help 
second-year undergraduate students when the teaching 
approach procedural. In that study, students who were 
taught how to find the basis for a vector subspace using 
the matrix manipulation method still struggled to 
understand the construct of basis, which made further 
progress even more difficult. Detached emphasis on 
matrix processes on their own did not help students 
understand the concept of basis. The stern construction 
of the embodied and visual ideas based on Tall’s (2004) 
three worlds was suggested as a possible remedy.  

If students’ hierarchical development of knowledge 
in linear algebra remains basic, they struggle to make 
sense of further linear algebra concepts. This is posited 
by Ndlovu and Brijlall (2015) who found that 
undergraduate students operated at the action or 
process stages of APOS theory. Moreover, they observed 
that the schema for basic algebra and real numbers were 
not robust, which militated familiarity with 
terminologies and notations. To counter this, the authors 
suggested revising the theoretical decomposition of 
matrix operations so that students were be able to make 
the required mental constructions of linear algebra 
concepts. On the other hand, Ndlovu and Brijlall (2016) 
investigated students’ mental constructions as they learn 
the concept of determinants but without the application 
thereof. They discovered that most students 
conceptualized determinants procedurally and operated 
on the action or process stages of APOS theory. In both 
studies by Ndlovu and Brijlall above, students failed to 
attain the object mental structures, which inadvertently 
is the goal of all mathematics teaching (Voskoglou, 
2015). The literature sources cited above were framed on 
APOS theory alone or jointly with the Three Worlds by 
Tall (2004). APOS is the same theoretical framework 
engaged in this study and it is described in the next 
paragraph. 

APOS theoretical framework is a pedagogical 
approach and evaluative tool that is used to study the 
learning of undergraduate mathematics concepts (Asiala 
et al., 1996). According to Dubinsky and MacDonald 
(2001) students understand a mathematics concept 
through construction of knowledge called reflective 
abstraction and interaction with peers. The pedagogical 
approach for APOS is the activities-class discussion-
exercises teaching cycles whereby a concept is 
developed through repetitive group-based activities 
before and after class, with a whole class discussion in 
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between. This is achieved by instructor-researcher 
proposing a genetic decomposition (GD) of the concept 
to guide the activities. A GD describes sequence of tasks 
that demand mental constructions that students ought to 
attain as they learn a mathematics concept (Altieri & 
Schirmer, 2019). In this study, APOS theory was used as 
to evaluate undergraduate students’ mental 
constructions of EROs as a means to solve SLEs after 
traditional teaching of the concept, as discussed by 
Arnon et al. (2014). The mental constructions are 
categorized as hierarchical growth of knowledge 
starting at actions, processes, objects and schemata 
levels.  

The action conception of a mathematics occurs when 
students can perform step-by-step transformation and 
each step is externally connected to the next. Students 
cannot skip a step and each step is externally motivated. 
Students ordinarily start learning a concept at the action 
level. When students can reflect on an action and can do 
the same transformation mentally, they would have 
interiorized the action into a process. At this stage 
students can predict outcomes and work in reverse. 
When a student can view a transformation in totality 
whereby they realize that actions and processes can be 
applied to this totality, they would have encapsulated 
the mathematics concept into an object. With an 
objection conception, students can determine the 
applicability of an algorithm to a problem situation. 
Finally, a schema is a coherent collection of actions, 
processes, objects and other previously held schemata. 
New schemas are created as new knowledge is 
constructed through assimilation and accommodation.  

EROs categories of the growth knowledge are given 
in the next paragraph, which is the formulated GD. The 
two categories are given separately as conceptualizing 
EROs and the application of EROs in solving SLEs. 

Pre-Requisite Stratum: EROs 

Pre-action: Individuals can transform an SLE into 
matrix format and vice-versa.  

Action: The individual executes EROs to reduce a 
given matrix of any order to echelon or reduced row 
echelon. The steps are calculated sequentially an 
individual is bound to the steps related to the procedure. 
Ideally, all matrices of any order are reducible to 
echelon. 

Process: Each step carried out implicitly and an 
individual can imagine carrying out the processes 
mentally. The individual can predict EROs that results in 
an upper triangle matrix without having to go through 
each step explicitly. 

Object: An individual can reduce a matrix of order 
𝑚 × 𝑛 by conceiving EROs as a totality upon which 
further actions and processes can be carried out. The 
properties of EROs can be explained and established 
because they are recognized entities, which can be 

manipulated and transformed. For example, an 
individual can reduce a matrix with variable elements.  

Application Stratum: Solution of SLE Using Gaussian 
Elimination 

Action: An individual performs EROs of an 
augmented matrix to solve an SLE.  

Process: An individual can perform EROs mentally 
and predict the nature of solutions of an SLE.  

Object: An individual can apply ERO to solve an SLE 
for any type of solution including those with variable 
elements. They use EROs to find the type of solution for 
a particular SLE. When presented with an SLE, where 
there are more unknowns than equations, an individual 
automatically perform EROs to find solutions involving 
free variables. For unique solution to an SLE, students 
realize they can also use Cramer or the inverse method.  

METHODOLOGY 

To explore the students’ conceptualization of EROs, a 
descriptive research approach was followed. The usage 
of a descriptive research approach is “best suited to 
examining and trying to make sense of a situation or 
event as it currently exists in the world” (Leedy & 
Ormrod, 2021, p. 174). By focusing phenomena on their 
natural settings, descriptive research does not involve 
modifying a situation under investigation, nor does it 
intend to determine cause-and-effect relationships. I 
adopted the qualitative case study research design, and 
the main assumption is that phenomena is studied as a 
closed system (Creswell & Creswell, 2018). The author 
taught linear algebra to third-year secondary Bachelor of 
Education degree students majoring in mathematics and 
a science subject. The participants consisted of 131 
students doing a mathematics for educators course, 
where linear algebra was one of the topics. This was the 
students’ very first encounter with linear algebra. Of 
these, 80 were male and 51 were female. Data was 
collected through a formal test written individually by 
all students. The selection of the class was based on the 
fact that the researcher was the instructor, also a norm in 
classroom-based research. Only two tasks were selected 
for this study from the test. The two items were:  

1. Use Gauss-Jordan elimination to solve following 
systems of equations: 

 

−3𝑦 = −6 

𝑥 − 2𝑦 − 2𝑧 = −14 

4𝑦 − 𝑥 − 3𝑧 = 5 

(2) 

2. Given the system 

 

𝑥 + 2𝑦 − 3𝑧 = 4 

3𝑥 − 𝑦 + 5𝑧 = 2 

4𝑥 + 𝑦 + (𝑎2 − 14)𝑧 = 𝑎 + 2 

(3) 

Find the value of 𝑎 does the system have  

(a) one solution  
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(b) infinitely many solutions, and  

(c) no solution. 

The first item was explicit on the Gauss-Jordan 
elimination but EROs played a key role to reduce the 
augmented matrix to row canonical form. However, the 
second item was silent on the method so that as part of 
schema development, students could figure out on their 
own that only GE method is applicable when all the 
three types of solutions are under consideration. The 
items were meticulously selected in order to create 
opportunities for students to construct the required 
mental constructions as indicated in GD (Ndlovu & 
Brijlall, 2015). Data analysis involves paying particular 
attention to students’ reasoning reflected in the written 
responses (Radu & Weller, 2011). After the students 
wrote the test, a further eight students were purposively 
selected from the initial 131 for the semi-structured 
interviews. The purpose of the interviews were to 
examine students’ conceptions and application of EROs 
more closely (Oktac et al., 2019) and to corroborate the 
initial analyses of the written responses. The interview 
transcriptions formed the second data set for this study. 
Normal ethical consideration as to any research were 
adhered to. For confidentiality, the participants’ 
responses’ were labelled X1, X2, up to X131. With 
confidentiality, only the researcher knew the individuals 
who provided specific responses. The participants’ 
informed consent was sought at the start of the study, 
and they were told they could withdraw at any point of 
the research process if they felt threatened and unsafe. 

The author marked the written responses and 
analyzed them. The responses were initially coded as 
blank (B), wrong (W), partially-correct (P), and correct (C) 
and the frequencies were recorded. After the ordinal 
categories, inductive content analysis of written 
responses was done to assist in identifying different 
components of APOS theory in all of the correct, 
incorrect and partially-correct solution strategies. In 
addition, the interview transcriptions were analyzed 
thematically so that emerging patterns in the data were 
identified and discussed. After analyzing both the 
written and interview responses, meaning was assigned 
to them and the level whereat students operated was 
described in terms of APOS theory. The researcher 
compared the failure or success of students on the two 
tasks with specific mental structures they may/may not 
have attained and tried to explain the differences 
(Dubinsky & McDonald, 2001).  

RESULTS 

The frequencies for both items are given in Table 1. 

From Table 1, similar experiences for both items were 
observed for blank and wrong categories but immense 
differences emerged in partial and correct. The 
explanations for the performances for each item are 
given separately in the following sections. 

Item 1 Analysis 

In this item, students were required to perform about 
eight EROs in order to reduce the augmented matric to 
row canonical and then determine the values of the 
unknowns.  

Application of three rules of EROs 

Firstly, nine students skipped this question entirely 
without rendering an attempt. Six students indeed 
attempted to transform SLE to matrices in order to 
perform EROs but were not precise in doing so. They did 
not realize that the order of the variables were jumbled, 
hence they took the coefficients in the order given as 
illustrated in Figure 1.  

This denotes that some students operated at the pre-
action conception. X14 could not append a zero 𝑎11as 
expected. He also proceeded with EROs but with a null 
on the first pivot. The interview with X128 revealed also 
that students were not observant on the order of the 
variables: 

Researcher: Can you see there is no coefficient of 
𝑥? 

X128: Zero is the coefficient of 𝑥. 

R: Where did you write it? 

X128: But I do not know why it is not there. 

R: Who should know? Again, what’s wrong here? 

Table 1. Frequencies of ordinal data of written responses 

Response Item 1 frequencies Item 2 frequencies 

B 9 12 
W 11 15 
P 58 102 
C 53 2 
Total 131 131 

 

 
Figure 1. Flawed transformation to an augmented matrix by 
X14 (Source: Author's own illustration) 



Tatira / Undergraduate students’ conceptualization of elementary row operations 

 

6 / 15 

X128: The coefficient of 𝑥 should be here on 
column 1. 

R: Can you see I jumbled the variables? 

X128: Yes and I missed that.  

R: So it’s all wrong. 

X128: Yes. 

Student X118 attempted to use the inverse method 
but failed to transform SLE into matrices and again failed 
to find the adjoint (as shown in Figure 2). If X118 was 
well conversant with EROs, she could have used them to 
find the inverse of the matrix.  

Three more students transformed SLE correctly into 
matrices form but did not adhere to the format of Gauss-
Jordan. By failing to do a row-swap, they performed 
row-reduction with a leading zero on the pivot, albeit 
with correct EROs. The response by X28 in Figure 3 
illustrates this anomaly. By failing to have a leading one 
in the pivot, X28 lost the solution of 𝑥, albeit the 𝑦 − and 

𝑧 − solutions being correct. X104 and X127 made the 
misconception of getting the trivial first column. 
Moreover, the reduced matrix was not in row canonical 
form. Thus some students’ action conception was not 
robust.  

The highest number of students in this item were in 
the category for partially-correct responses, with a 44%. 
The majority of these students encountered computation 
difficulties to get correct EROs. For example, X18 made 
a mistake of saying (−14) + 5 gives −11 as shown in 
Figure 4.  

X18 duly went on to find the reduced row echelon but 
the final answers lacked precision. Some students like 
X15 were lost in simplifying fractions that arose in the 
process of row-reductions.  

Besides, X104 who presented an incomplete solution, 
the rest made non-systematic errors, hence eight of them 
only managed to get 𝑧 = 3 but with wrong 𝑥 − and 
𝑦 −values. A further four students coped with EROs to 
obtain the correct 𝑧 and 𝑦 values but incorrect 𝑥. This 
implied that the process of back-substitution was 
flawed. X41 had both row-reduction and back-
substitution errors in his solution as shown in Figure 5. 

 
Figure 2. Multiple errors made in a wrong method by X118 
(Source: Author's own illustration) 

 
Figure 3. Failure to reduce to a Gauss-Jordan format by X28 
(Source: Author's own illustration) 

 
Figure 4. Computational error by X18, which spoiled rest of 
solution (Source: Author's own illustration) 

 
Figure 5. Non-systematic errors in row & back-substitution 
(Source: Author's own illustration) 
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Type of errors 

Another common error observable in Figure 5 is that 
of not reducing to row canonical form. Students thought 
since they could find the required unknown values after 
reducing to echelon form, there was no need to proceed 
to reduced row echelon form. This was in struck contrast 
to the instruction in the question. The dialogue with 
X130 illustrates this scenario: 

R: The question was saying Gauss-Jordan. Do you 
know it? 

X130: Yes. 

R: Do you know the difference between Gauss and 
Gauss-Jordan elimination? Perhaps up to now 
you do not know!  

X130: Both lower and upper triangles must be 
zeros for Gauss-Jordan. 

R: Is that what you did there? 

X130: No. 

R: Why? 

X130: I did not take that serious because the 
answers came out with upper triangle only. 

Finally, about 40% of the students displayed evidence 
of conceptualization at the object level. X55 had the 
ingenuity of avoiding working with fractions by 
expressing row-reduction rules like 13𝑟2 − 𝑟3 → 𝑟3 
instead of reducing all the pivots to one. The dialogue 
with X44 below confirms students’ uneasiness to work 
with fractions. Together with those who went ahead to 
work flawlessly with fractions, these students 
understood concept and application of EROs in solving 
an SLE using Gauss-Jordan elimination. The fully-
correct solution for X55 is shown in Figure 6. 

Even though the pivot is non-unitary, X55 managed 
to reduce SLE to reduced row-echelon and obtained the 
correct solutions by dividing by the figure in the pivot. 
To show interiorization, X55 performed row-swapping 
without actually showing it. The dialogue with 44 
alludes to this: 

R: Why did you swap the rows? 

X44: Because there is a zero on the pivot. 

R: Is it a problem if there is a zero there? 

X44: Yes because we must reduce to Gauss-
Jordan. 

R: But here; why did not you divide by three since 
it is Gauss-Jordan. We must have a 1 there, must 
not we? 

X44: I was afraid of working with fractions. 

R: With a 1 it’s going to be easy, and you get 0 in 
the lower part. 

X44: But those nasty fractions Sir! 

Correct solution indicates that 53 students learned 
concept of EROs and its application in solving SLEs.  

Item 2 Analysis 

This item called for students to realize the usage of 
GE or Gauss-Jordan as the only method to determine no 
solution or infinitely many solutions to the given SLE 
with variable coefficients.  

Method-Type of solving SLEs 

Results showed that 12 students did not attempt the 
question and five of those just wrote the augmented 
matrix only and stopped. X22 failed to get the correct 
matrix form of SLE as shown in Figure 7. 

According to GD, the evidence above represent an 
un-attained pre-action to the solution of SLE. On top of 
that, 16 students made attempts to solve SLE, but their 
efforts were in vain. X125 tried to use the Cramer’s rule 
and went ahead to find the determinants required in the 
Cramer’s as shown in Figure 8.  

 
Figure 6. A fully correct solution, which avoided fractions 
(Source: Author's own illustration) 

 
Figure 7. Incorrect augmented matrix as only written work 
submitted (Source: Author's own illustration) 
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This student did not realize that only GE is applicable 
to this question and with it there is no need for the 
determinant. Coupled with this, six students did not 
perform row reduction to the augmented matrix as 
shown in Figure 9. Instead, X125 attempts to find the 
determinant. Without doing row reductions, then the 
students were not cognizant of their role in solving 
problems of this nature or they were not confident to 
reduce matrices with unknown coefficients.  

X16 went straight to find the values of 𝑎 for the three 
cases without reducing the augmented matrix first. It 
was not a case interiorization because the equations used 
to evaluate 𝑎 were incorrect. The interview with X42 
revealed the same weakness: 

R: I can see you changed the equations to matrices. 
But where are the row operations? 

X42: I was trying to solve it Sir but hey … 

R: Solve it how? 

X42: I was trying to find the value of a? 

R: Without reducing to Gaussian? 

X42: I never thought I would … 

R: Do you know we look at the last row to find the 
unique, no or infinitely many solution? 

X42: Yes yes, I know. 

R: For example if it is zero zero, zero, and zero; 
what is the nature of solutions? 

X42: They will be many. 

R: And if it’s zero, zero, a number and another 
number? 

42: One solution. 

R: Yes. And if the last row is zero, zero, zero and a 
number? 

X42: No solution. 

R: So where are the row operation to reduce to 
upper triangle? 

X42: I never did that Sir. 

Furthermore, six students got the wrong solution by 
computing the determinant of the 3 × 3 coefficient 
matrix as shown in Figure 10. However, after getting the 
expression of determinant, they hit a dead end. Among 
them, X127 attempted to calculate the inverse of the 
coefficient matrix using the adjoint method, but to no 
avail. Students who were not comfortable performing 
EROs with variable elements decided to find ways to 
replace 𝑎 with a constant value. For example, X106 used 

𝑎 = 1 to obtain matrix (
1 2 −3
1 −1 5
4 1 −13

|
4
2
3

) and then did 

EROs. When probed on the origin of 𝑎 = 1, she said: 

R: But there is a problem here. Where did you get 
this: 𝑎 = 1? 

X106: I said 𝑎 = 1 and after I was going to 
substitute here. 

R: Who told you 𝑎 = 1? 

 
Figure 8. Inappropriate use of Cramer’s rule by X125 
(Source: Author's own illustration) 

 
Figure 9. No evidence of use of EROs to solve problem by 
X16 (Source: Author's own illustration) 

 
Figure 10. Finding determinant by expanding along row 
one by X21 (Source: Author's own illustration) 
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X106: No-one. So that’s the problem because I did 
not attend the class. 

X116 changed 𝑎2 − 14 to 2𝑎 − 14 to which he then 
performed row-reductions. X41 also used the 
substitution 𝑎 = 2 to simplify the augmented matrix and 
then proceeded to perform EROs as shown in Figure 11.  

Moreover, the row operation (𝑅3 − 4𝑅1 → 𝑅3) used to 
get 0 in the element 𝑎32 is not proper as it would 
destabilize the first column in the process. Instead, the 
pivot on 𝑎22 is the one to be used to eliminate the element 
on 𝑎32.  

The analysis of the partial responses of the 101 
students revealed challenges with doing row-reductions 
and interpreting the solutions of the row-reduced 
augmented matrix. Student X128 started the row-
reductions well but gave up before completing up to 
echelon form. In contrast, 79 students made conceited 
efforts to reduce the augmented matrix to echelon but 
failed to get the last row, which is decisive in interpreting 
the three types of solutions. The majority were not 
precise in the manipulations of the row-reduction as was 
the case with X30 shown in Figure 12. 

It is very alarming to see such a huge number of 
students erring this way as this had the effect of spoiling 
the subsequent stages of interpreting the solutions. In 
GE, the behavior of the last row is critical to determine 
the nature of the solutions, and in this particular item, to 
evaluate the value(s) of the constant 𝑎. X79 had more 
complications with some of the row operations and 
subsequently failed to reduce the augmented matrix to 
echelon (shown in Figure 13). 

Students like X79 still find executing row operations 
a bit of a challenge as they fail to reduce to echelon. The 
interview with X79 alludes to this: 

R: Why is there no zero here? Did I ever talked 
about the upper triangle? 

X79: Yes sir. 

R: What is this four doing here? 

X79: I struggled to do this question Sir. 

R: Then you skipped this four and reduced to zero 
the next element. Would it work if you skipped 
this one? 

X79: We put the zeros from left to the right I know. 
We cannot start on the middle column before 
there are zeros here. 

R: Why did not you do it that way? How do you 
go to the interpretation with this number four 
here? 

X79: I practiced but … 

Nonetheless, EROs are learnt as a means to solve SLE 
problems using GE; this result revealed that 20 students 
completed all EROs but has challenges with the 
interpretation of the solutions.  

 
Figure 11. Simplifying augmented matrix with an unknown 
substitution (Source: Author's own illustration)  

Figure 12. Lack of precision in computations (Source: 
Author's own illustration) 

 
Figure 13. Complications in row-reductions (Source: 
Author's own illustration) 
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Types and Interpretation of Solutions 

Nine failed to interpret the connotation of the last row 
of the row-reduced matrix to the type of solutions 
associated with it. All of them managed to get the last 
matrix correct as shown in Figure 14 but it was the 
interpretation thereof which was problematic. In the 
interview, X2 indicated that: 

R: Tell me; when you get at this stage, what is your 
interpretation of  

(a) unique,  

(b) infinitely many, and  

(c) no solutions? 

X2: the problem is that I did not understand those 
things of nature of solutions. That’s why I got it all 
wrong. 

R: But we did an example on this one in class, did 
not we? 

X2: Yes. According to me, it was not enough. I 
would have wanted more and more examples. 

X122’s response is depicted in the vignette in Figure 

14, and X110 also presented the same response. X102 did 
not even attempt to find the values of 𝑎 that correspond 
to each type of solution whilst X123 managed to get the 
answer to no solution only. Even in the answer for the no 
solution, X123 did not find the intersection of the in-
equations 𝑎2 − 16 ≠ 0 and 𝑎 − 4 ≠ 0 as is the case.  

In connection to intersection solution, eleven 
students solved the equations for the three cases almost 
in the expected way but failed to find the common 
solution. Figure 15 depicts an otherwise correct solution, 
which only lacked the intersection of the two parts.  

X11 also missed the intersection for (a), did not 
complete (b) and skipped (c) entirely as described in the 
following dialogue.  

R: There is supposed to be one solution. It cannot 
be both. We are saying AND.  

X11: Eeeeh. This side we get these two solutions. 

This side we get this one. 

R: We want the number, which is common to both 
solutions. 

X11: I was supposed to … I can see. 

R: Where is the intersection? This four is common 
in both. 

X11: Oh I can see. Next time I will make sure I will 
not repeat. 

Hence lack of robust understanding of the behavior 
of the last row to the three types of solutions was the 
hindrance.  

Finally, only two students successfully performed 
EROs and interpreted the solution types to SLE. These 
were X2 and X75. The execution of EROs, the 
interpretation of the solution and the intersection of 
solutions were effortlessly done in Figure 16 by X75 (part 
of the solution was cropped off to reduce the image size). 
However, it is a very small proportion of students who 
fully developed the schema.  

The above sub-sections in this section can be 
coalesced to give a good picture of undergraduate 
students’ conceptualization of EROs as they solve given 
problems. Initially, students are expected to determine 
and apply the three rules for EROs. This is followed by 
the need for them to figure out the appropriate method 
to solve given SLEs based on the limitations of each. 
APOS theory provided the level to determine the degree 
to which students’ understanding developed in the 
process of learning linear algebra. Thirdly, lack of full 

 
Figure 14. Correct EROs but incorrect interpretation of last 
row (Source: Author's own illustration) 

 
Figure 15. Incomplete solution lacking only intersection by 
X6 (Source: Author's own illustration) 
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understanding of EROs in solving SLEs lead to many 
types of cognitive and procedural errors.  

Eventually, this culminated in students displaying 
different levels of interpretation of results, which they 
obtained after solving an SLE. Unique solutions were 
rather straightforward to determine, but no solution and 
infinitely many solutions required higher-levels of 
mental constructions. With this mind map of the journey 
that students take to conceptualize EROs, I now discuss 
how this mind map of results support or refute current 
literature in the next section. 

DISCUSSION 

 Results give a snapshot of nature of undergraduate 
students’ mental constructions when learning EROs 
concept and its application in solving SLE.  

APOS Theory in Research 

As a theory of learning, APOS can only make external 
observations of students’ learning through what they 
write down and speak. This necessitates taking a 
snapshot of students’ understanding at a particular point 
in time through the guidelines of the researcher’s 
proposed decomposition of the concept (Martin et al., 
2010). This seemingly transcends the dynamic nature of 
the development of mathematical schemata. Hence, our 
analyses of students’ responses may not be the exact 
thoughts processes of the students before, during and 
after data collection (Kazunga & Bansilal, 2017). Their 
written and verbal responses acts as proxy of how they 
reason and think about solutions of SLEs using GE. 
Nevertheless, the use of APOS theory is insightful in that 
instruction of mathematics concepts are designed 
around the pre-determined steps in mental 
constructions called GD. The theoretical analysis of the 
concepts is designed by the researcher who also happens 
to be the instructor in such a way that students are 
actively involved in the learning process (Chagwiza et 
al., 2021). As a data analysis tool, researchers use APOS 

theory to compare the students’ failure or success on 
mathematics tasks against specific mental constructions 
called for by GD (Dubinsky & McDonald, 2001). The 
researcher then tries to explain the possible differences 
between the projected and actual students’ 
performances by pointing to the actions, processes and 
objects mental constructions.  

Gaussian Elimination 

The second item was silent on the method, which 
students could use to solve the problem and the choice 
of GE was supposed to be spontaneous. GE is usually 
used to solve SLEs (Srinivasan et al., 2017). The majority 
of students managed to do exactly that except a few. This 
lack of spontaneity was also observed by Harel (2017) in 
a study involving SLEs with a large number of 
unknowns. In such a situation, GE offers a system 
approach that uses EROs to reduce the matrix to echelon 
form, but students in that study resorted to the manual 
elimination of variables technique. That showed a lack of 
object conception skills. The results indicated that the 
concept of EROs was essential to solving SLEs when the 
solution is not unique, thus it must be emphasized in the 
learning of SLEs. The lack of understanding of essential 
concepts negatively impacts students’ achievement in 
SLE (Arnawa et al., 2019). 

With regard to item 1, many students made use of the 
action conception whereby they used GE algorithm to 
calculate the values of 𝑥, 𝑦 and 𝑧. Algorithms are step-by-
step instructions, which enable accomplishment of a 
given task (Kontorovich, 2020). In APOS theory, the 
algorithm is explicit and externally driven. This concurs 
with research conducted in linear algebra that reports 
that students cope well with procedural aspects but have 
conceptual challenges of linear algebra concepts 
(Kazunga & Bansilal, 2017). However, not all students 
who solved SLE interiorized because they did not realize 
that even though SLE can be solved by GE, they were 
instead required to use the Gauss-Jordan elimination. 
These students did not show understanding that indeed 
the two were different methods to solve SLE but only 
one of them was called for. The interviews revealed that 
students did not bother further reducing to reduced row 
echelon on the fact that they had obtained the required 
solution already. This meant doing a few more row 
operations to reduce the augmented matrix to both 
lower and upper triangle, which was only done by 53 
students. However, doing these reductions to Gauss-
Jordan may involve painful and tedious operations and 
fractions therein are inevitable (Rindu, 2017). Naturally 
students prefer GE as it is faster than the Gauss-Jordan 
method (Gharib et al., 2015). To students, the selection of 
a method to use depends on accuracy and speed in 
solving large systems of equations because the volume 
of computations involved are bulky (Mandal et al., 2021). 
Nevertheless, all students except 20 understood EROs as 
a tool for solving SLE using the Gauss/Gauss-Jordan 

 
Figure 16. Solution, which depicts encapsulation of EROs in 
solving SLE (Source: Author's own illustration) 
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methods (Martin et al., 2010), which demonstrated an 
object conception. The 20 either skipped the question 
altogether or evaded EROs in their solution processes.  

Procedures for Elementary Row Operations 

Siahaan et al. (2023) posit that college students do not 
comprehend the procedures and concept of EROs, 
evidenced by students’ inability to execute requisite 
EROs for each step of row-reduction. This weakness was 
more pronounced in the second item, which had variable 
elements. In that case, two students tried to simplify the 
row operations by eliminating the unknown element 
with a numeric. Generally, many students are not 
proficient in solving mathematics problems involving 
fractions (Smith & Powell, 2011). Student X55 tried to 
circumvent fractions by working with non-one pivots. 
By so doing he did not divide by the coefficient of the 
pivot, rather he multiplied the other row by the value of 
the coefficient. This resulted in dealing with big numbers 
in addition to flouting the rules of Gauss-Jordan for the 
main diagonal. Unfortunately, students who attempted 
to avoid fractions made more mistakes in the process so 
that they got partially-correct responses. The best way 
was to take the fractions head-on, which many students 
managed to do so.  

The frequency of students who managed to row-
reduce the augmented matrix to Gauss-Jordan in item 1 
was more than for item 2. Item 1 required use of action 
conception to reduce the augmented matrix to row 
canonical form, leading to the unique solution for the 
given SLE. Students have an intuition regarding SLEs 
with unique solutions and this is represented 
geometrically by the intersection of all the linear graphs 
making up the system (Karunakaran & Higgins, 2021). 
Instruction also “foregrounds solving methods that 
focus first on unique solution cases, before moving to the 
much more common cases of no solution or infinitely 
many solutions” (Karunakaran & Higgins, 2021, p. 308). 
However, item 2 involved row-reducing a matrix with 
variable elements and this required students’ process 
conception of linear algebra. Fewer students 
consequently managed to execute the correct EROs. 
Among those who got EROs correct, one of their greatest 
challenge to interpret the last row of the reduced matrix 
so that they could find the value of 𝑎 for which the 
system had unique, no or infinitely many solutions. 
Object conception of linear algebra was called upon to 
do the correct interpretation. Oktac (2018) comment that 
students unsuccessfully relied on procedural knowledge 
and memorization to interpret 0 = 0 or 0 = 9 to decide 
which one has no solution infinitely many solutions. In 
this study, their decisions were complicated in that the 
last row had quadratic expression 𝑎2 − 16 on the pivot 
and 𝑎 − 4 after the vertical line. Students were supposed 
to think at object conception to solve and find the 
intersection of 𝑎2 − 16 = 0 and 𝑎 − 4 = 0, giving the 
final answer 𝑎 = 4 for infinitely many solutions. Only X2 

and X75 encapsulated the concept of solving SLEs in 
item 2. This is disquieting as the goal of instruction is 
help students attain the object conception of the 
mathematics topics they learn. In addition, GE is an 
efficient and structured method of solving SLEs and 
conceptual understanding is needed at every step of the 
solution process (Dewi et al., 2021). A conceptual 
understanding is regarded as the coherent knowledge 
that enable students to learn new ideas by linking them 
to what they already know (Kilpatrick, 2001). The lack of 
encapsulation also saw some students opting to use the 
Cramer’s rule and the inverse method in item 2. But after 
computing the determinant, inverse and co-factor, the 
reached a dead-end.  

Types of Errors 

The results revealed many types of errors made by 
students as they learn linear algebra (Mutambara & 
Bansilal, 2022). Some errors were foundational in nature, 
meaning manipulation and baseline knowledge errors. I 
also identified errors that were procedural, meaning 
errors related to the step-by-step processes in the 
solution. For example, students failed to transform SLE 
into matrices. According to Possani et al. (2009), 
transforming an equation into an equivalent one is 
action-level conception. On the contrary, the preliminary 
GD indicated that transforming equations into matrices 
is pre-action. However, whether classified as pre-action 
or action, students reflect on this knowledge and 
incorporate it into algorithms or procedures. In APOS, 
this is called interiorization of actions into processes. 
Lastly, there are conceptual errors, which are associated 
with deep-seated misunderstandings, which Makonye 
(2012) described as misconceptions. If students thought 
of SLEs as a whole, compare and predict their types of 
solutions, they would have constructed an object 
conception (Possani et al., 2009). But some students 
failed to perform EROs to solve SLEs with no solutions 
or infinitely many solutions and failed to interpret the 
types of solutions. Students were supposed to realize 
that for unique solutions, other methods like the Cramer 
or inverse method can be used (Kazunga & Bansilal, 
2020) but only GE is applicable for no solution or 
infinitely many solutions. This happens when students 
do not encapsulate the actions and processes of solving 
SLEs. GE method makes use of EROs to reduce a given 
augmented matrix to echelon, hence non-encapsulation 
of EROs resulted in students struggling determining 
solutions to SLEs (Mutambara & Bansilal, 2018). The 
most common type of error was procedural, where 79 
students started well doing EROs but failed to get the 
correct last row. In GE, the last row is critical to figure 
out the type of solutions associated with a given SLE. 
When reduced to upper triangle, it is the last row that 
has the largest number of noughts.  
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CONCLUSIONS AND IMPLICATIONS 

The schema development of EROs was moderately 
fared by many students. Executing the three rules 
required to reduce an augmented matrix to echelon form 
was understood by some students using procedural 
proficiency while developing conceptual development 
as well. However, the majority of students who had 
encapsulated the pre-requisite concept could not 
encapsulate the application thereof to solve SLE using 
GE. In this study, quite a number of students had 
flawless EROs but struggled with the interpretation of 
the solving SLEs. Students’ thinking was more intuitive 
to interpret for unique solutions to SLEs relative to 
systems with infinitely many solutions or no solution 
(Karunakaran & Higgins, 2021; Oktac, 2018).  

Similarly, those students who struggled with EROs 
obviously could not engage SLE properly. This study 
contextualized EROs in solving SLEs, a concept that is 
known to challenging to undergraduate students. 
Despite the fact the majority of elementary linear algebra 
are regarded as abstract and lack connection to what 
students already know (Dorier et al., 2000), solution of 
SLEs are done in secondary school using the technique 
of elimination of variables. As this technique is 
cumbersome for multiple equations with multiple 
unknowns and SLEs with non-unique solutions, a 
connection was established to undergraduate 
mathematics, where a systematic elimination technique 
called GE through EROs replaces the elimination 
method. This study revealed a greater need for more 
problems, which provide students with the 
opportunities to scrutinize SLEs geometrically and 
algebraically for all types of solutions for all orders. In 
this study, students demonstrated inroads into EROs as 
a concept but struggled to apply it in solving SLEs. 

The use of APOS theory has intension to instructional 
strategies as understanding the mental constructions 
that students make when learning a mathematical 
concept leads to improved practice (Ndlovu & Brijlall, 
2016). The mental constructions made by the students 
concurred with the preliminary concept decompositions 
for both the concept of EROs and their applications. It 
has also come to the fore in this study that some concepts 
are not learnt as an end to themselves but as means to 
the end.  

The concept of EROs is often reduced to rules without 
meaning yet it plays a vital role in solving SLEs using 
GE. The learning and teaching of SLEs by GE should be 
problem-based as a means to help students develop the 
necessary mental structures of both the concepts of EROs 
and solving SLEs. The types of problems should be 
selected to invoke each of the action, process or object 
conceptions (Tatira, 2023). I suggest designing GD-
informed instruction, as well as steering instruction 
towards the achievement of the mental constructions 
spelled out by GD. As students find the learning of linear 

algebra difficult (Altieri & Schirmer, 2019; Possani et al., 
2009; Salgado & Trigueros, 2015) this study contributes 
to the debate in literature on how to improve the 
teaching of linear algebra. 
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